Quantum Zeno effect

The paradox is named after the Greek philosopher Zeno of Elea (c. 490–430 BC) and is also known as the “arrow paradox”.

Zeno shows the youth the doors to Truth and Falsity (Veritas et Falsitas)

If everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless.
Zeno as recounted by Aristotle, Physics VI:9, 239b5

In 1977, Baidyanaith Mishra and George Sudarshan demonstrated that an unstable particle will never found to decay when it is continuously observed (cf. observation of the bistable Necker cube).

  • Sudarshan, E. C. G.; Misra, B. (1977). “The Zeno’s paradox in quantum theory”.  Journal of Mathematical Physics. 18 (4): 756–763.
Show original paper

The Zeno effect is also known as the Touring paradox. Touring formulated the following:

[I]t is easy to show using standard theory that if a system starts in an eigenstate of some observable, and measurements are made of that observable N times a second, then, even if the state is not a stationary one, the probability that the system will be in the same state after, say, one second, tends to one as N tends to infinity; that is, that continual observations will prevent motion. Alan and I tackled one or two theoretical physicists with this, and they rather pooh-poohed it by saying that continual observation is not possible. But there is nothing in the standard books (e.g., Dirac’s) to this effect, so that at least the paradox shows up an inadequacy of Quantum Theory as usually presented.

— Quoted by Andrew Hodges in Mathematical Logic, R. O. Gandy and C. E. M. Yates, eds. (Elsevier, 2001), p. 267.

Quantum Zeno effect in perception

Atmanspacher, H., Filk, T., & Römer, H.. (2004). Quantum Zeno features of bistable perception. Biological Cybernetics

Plain numerical DOI: 10.1007/s00422-003-0436-4
DOI URL
directSciHub download

Atmanspacher, H., & Filk, T.. (2012). Temporal nonlocality in bistable perception. In AIP Conference Proceedings

Plain numerical DOI: 10.1063/1.4773119
DOI URL
directSciHub download

General References

Facchi, P., & Pascazio, S.. (2008). Quantum Zeno dynamics: Mathematical and physical aspects. Journal of Physics A: Mathematical and Theoretical

Plain numerical DOI: 10.1088/1751-8113/41/49/493001
DOI URL
directSciHub download

Facchi, P., & Pascazio, S.. (2003). Quantum Zeno subspaces and decoherence. In Journal of the Physical Society of Japan

Plain numerical DOI: 10.1143/JPSJS.72SC.30
DOI URL
directSciHub download

Schäfer, F., Herrera, I., Cherukattil, S., Lovecchio, C., Cataliotti, F. S., Caruso, F., & Smerzi, A.. (2014). Experimental realization of quantum zeno dynamics. Nature Communications

Plain numerical DOI: 10.1038/ncomms4194
DOI URL
directSciHub download

Facchi, P., Marmo, G., & Pascazio, S.. (2009). Quantum Zeno dynamics and quantum Zeno subspaces. In Journal of Physics: Conference Series

Plain numerical DOI: 10.1088/1742-6596/196/1/012017
DOI URL
directSciHub download

Facchi, P., Nakazato, H., & Pascazio, S.. (2001). From the quantum Zeno to the inverse quantum Zeno effect. Physical Review Letters

Plain numerical DOI: 10.1103/PhysRevLett.86.2699
DOI URL
directSciHub download

Koshino, K., & Shimizu, A.. (2005). Quantum Zeno effect by general measurements. Physics Reports

Plain numerical DOI: 10.1016/j.physrep.2005.03.001
DOI URL
directSciHub download

Franson, J. D., Jacobs, B. C., & Pittman, T. B.. (2004). Quantum computing using single photons and the Zeno effect. Physical Review A – Atomic, Molecular, and Optical Physics

Plain numerical DOI: 10.1103/PhysRevA.70.062302
DOI URL
directSciHub download

Maniscalco, S., Francica, F., Zaffino, R. L., Lo Gullo, N., & Plastina, F.. (2008). Protecting entanglement via the quantum zeno effect. Physical Review Letters

Plain numerical DOI: 10.1103/PhysRevLett.100.090503
DOI URL
directSciHub download

Streed, E. W., Mun, J., Boyd, M., Campbell, G. K., Medley, P., Ketterle, W., & Pritchard, D. E.. (2006). Continuous and pulsed quantum zeno effect. Physical Review Letters

Plain numerical DOI: 10.1103/PhysRevLett.97.260402
DOI URL
directSciHub download

Signoles, A., Facon, A., Grosso, D., Dotsenko, I., Haroche, S., Raimond, J. M., … Gleyzes, S.. (2014). Confined quantum Zeno dynamics of a watched atomic arrow. Nature Physics

Plain numerical DOI: 10.1038/nphys3076
DOI URL
directSciHub download

Jacobs, B. C., & Franson, J. D.. (2009). All-optical switching using the quantum Zeno effect and two-photon absorption. Physical Review A – Atomic, Molecular, and Optical Physics

Plain numerical DOI: 10.1103/PhysRevA.79.063830
DOI URL
directSciHub download

Gambetta, J., Blais, A., Boissonneault, M., Houck, A. A., Schuster, D. I., & Girvin, S. M.. (2008). Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect. Physical Review A – Atomic, Molecular, and Optical Physics

Plain numerical DOI: 10.1103/PhysRevA.77.012112
DOI URL
directSciHub download

Itano, W. M.. (2009). Perspectives on the quantum Zeno paradox. In Journal of Physics: Conference Series

Plain numerical DOI: 10.1088/1742-6596/196/1/012018
DOI URL
directSciHub download

Gutiérrez-Medina, B., Fischer, M. C., & Raizen, M. G.. (2001). Observation of the quantum zeno and anti-zeno effects in an unstable system. In Technical Digest – Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, QELS 2001

Plain numerical DOI: 10.1109/QELS.2001.962243
DOI URL
directSciHub download

Kofman, A. G., & Kurizki, G.. (2000). Acceleration of quantum decay processes by frequent observations. Nature

Plain numerical DOI: 10.1038/35014537
DOI URL
directSciHub download

Wolters, J., Strauß, M., Schoenfeld, R. S., & Benson, O.. (2013). Quantum Zeno phenomenon on a single solid-state spin. Physical Review A – Atomic, Molecular, and Optical Physics

Plain numerical DOI: 10.1103/PhysRevA.88.020101
DOI URL
directSciHub download

Lewenstein, M., & Rza̧żewski, K.. (2000). Quantum anti-Zeno effect. Physical Review A – Atomic, Molecular, and Optical Physics

Plain numerical DOI: 10.1103/PhysRevA.61.022105
DOI URL
directSciHub download

Petrosky, T., Tasaki, S., & Prigogine, I.. (1990). Quantum zeno effect. Physics Letters A

Plain numerical DOI: 10.1016/0375-9601(90)90173-L
DOI URL
directSciHub download

Silagadze, Z. K.. (2005). Zeno meets modern science. Acta Physica Polonica B
Erez, N., Gordon, G., Nest, M., & Kurizki, G.. (2008). Thermodynamic control by frequent quantum measurements. Nature

Plain numerical DOI: 10.1038/nature06873
DOI URL
directSciHub download